A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation

نویسندگان

  • Sotiris Prokopiou
  • Eduardo G. Moros
  • Jan Poleszczuk
  • Jimmy Caudell
  • Javier F. Torres-Roca
  • Kujtim Latifi
  • Jae K. Lee
  • Robert Myerson
  • Louis B. Harrison
  • Heiko Enderling
چکیده

BACKGROUND Although altered protocols that challenge conventional radiation fractionation have been tested in prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize that the proportion of radiosensitive proliferating cells is dependent on the saturation of the tumor carrying capacity. This may serve as a prognostic factor for personalized radiotherapy (RT) fractionation. METHODS We introduce a proliferation saturation index (PSI), which is defined as the ratio of tumor volume to the host-influenced tumor carrying capacity. Carrying capacity is as a conceptual measure of the maximum volume that can be supported by the current tumor environment including oxygen and nutrient availability, immune surveillance and acidity. PSI is estimated from two temporally separated routine pre-radiotherapy computed tomography scans and a deterministic logistic tumor growth model. We introduce the patient-specific pre-treatment PSI into a model of tumor growth and radiotherapy response, and fit the model to retrospective data of four non-small cell lung cancer patients treated exclusively with standard fractionation. We then simulate both a clinical trial hyperfractionation protocol and daily fractionations, with equal biologically effective dose, to compare tumor volume reduction as a function of pretreatment PSI. RESULTS With tumor doubling time and radiosensitivity assumed constant across patients, a patient-specific pretreatment PSI is sufficient to fit individual patient response data (R(2) = 0.98). PSI varies greatly between patients (coefficient of variation >128 %) and correlates inversely with radiotherapy response. For this study, our simulations suggest that only patients with intermediate PSI (0.45-0.9) are likely to truly benefit from hyperfractionation. For up to 20 % uncertainties in tumor growth rate, radiosensitivity, and noise in radiological data, the absolute estimation error of pretreatment PSI is <10 % for more than 75 % of patients. CONCLUSIONS Routine radiological images can be used to calculate individual PSI, which may serve as a prognostic factor for radiation response. This provides a new paradigm and rationale to select personalized RT dose-fractionation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Apoptotic Biomarkers to Predict Response to Radiotherapy in Breast Cancer Patients

Introduction: To enhance radiation therapy efficiency it is crucial to implement an individual-based treatment. The aim of present study was to identify the mechanism of intrinsic apoptosis pathway on radiosensitivity and normal tissue complications caused by the radiotherapy.   Materials and Methods: radiation-induced apoptosis in periphera...

متن کامل

Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy

Objective(s): Radiotherapy is one of the most effective modalities of cancer therapy, but clinical responses of individual patients varies considerably. To enhance treatment efficiency it is essential to implement an individual-based treatment. The aim of present study was to identify the mechanism of intrinsic apoptosis pathway on radiosensitivity and normal tissue complications caused by the ...

متن کامل

Developing a Mobile Phone Application for Common Radiotherapy Calculations

Accuracy of the radiotherapy requires some routine quality control and dosimetry calculations, which would be done by radiotherapy physicists. Due to the increasing use of computers and simulation software in medical science, as well as trends indicating its continued growth, this study aims to develop a new smart-phone application to perform common radiotherapy-related calculations. Computatio...

متن کامل

Highly proliferative neuroendocrine carcinoma – influence of radiotherapy fractionation on tumor response

A 45-year-old white male presented to our department with postoperative recurrence of gastrointestinal poorly differentiated neuroendocrine carcinoma manifesting as lymph node dissemination and a solitary implantation metastasis in the rectovesical pouch. Following disease progression on chemotherapy, the patient was treated with radiotherapy using either a conventional daily treatment or an ac...

متن کامل

Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells

Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015